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A Brain-Machine Interface Enables Bimanual Arm
Movements in Monkeys
Peter J. Ifft,1,2 Solaiman Shokur,2,3 Zheng Li,2,4 Mikhail A. Lebedev,2,4 Miguel A. L. Nicolelis1,2,4,5,6*
Brain-machine interfaces (BMIs) are artificial systems that aim to restore sensation and movement to paralyzed
patients. So far, BMIs have enabled only one arm to be moved at a time. Control of bimanual arm movements
remains a major challenge. We have developed and tested a bimanual BMI that enables rhesus monkeys to control
two avatar arms simultaneously. The bimanual BMI was based on the extracellular activity of 374 to 497 neurons re-
corded from several frontal and parietal cortical areas of both cerebral hemispheres. Cortical activity was transformed
into movements of the two arms with a decoding algorithm called a fifth-order unscented Kalman filter (UKF). The
UKF was trained either during a manual task performed with two joysticks or by having the monkeys passively ob-
serve the movements of avatar arms. Most cortical neurons changed their modulation patterns when both arms were
engaged simultaneously. Representing the two arms jointly in a single UKF decoder resulted in improved decoding
performance compared with using separate decoders for each arm. As the animals’ performance in bimanual BMI
control improved over time, we observed widespread plasticity in frontal and parietal cortical areas. Neuronal rep-
resentation of the avatar and reach targets was enhanced with learning, whereas pairwise correlations between
neurons initially increased and then decreased. These results suggest that cortical networks may assimilate the
two avatar arms through BMI control. These findings should help in the design of more sophisticated BMIs capable
of enabling bimanual motor control in human patients.
INTRODUCTION

The complexity and variety of motor behaviors in humans and other
primates is greatly augmented by the remarkable ability of the central
nervous system to control bimanual movements (1). Yet, this func-
tionality has not been enacted by previous brain-machine interfaces
(BMIs). BMIs are hybrid systems that directly connect brain tissue
to machines to restore motor and sensory functions to paralyzed in-
dividuals (2). The advancement of BMIs has been driven by two fun-
damental goals: investigation of the physiological principles that guide
the operation of large neural ensembles (3) and the development of
neuroprosthetic devices that could restore limb movements and sen-
sation to paralyzed patients (4, 5). Previous BMIs mimicked only single-
arm control and were represented by either a computer cursor (6–11),
a robot (8, 12, 13), or an avatar arm (14), but did not enable simulta-
neous bimanual control of arm movements.

Studies in nonhuman primates have shown that the brain does not
encode bimanual movements simply by superimposing two indepen-
dent single-limb representations (15, 16). Cortical regions, such as the
supplementary motor area (SMA) (17–19) and the primary motor
cortex (M1) (16, 18, 19), exhibit specific patterns of activity during bi-
manual movements. These complex neuronal representations pose a
major challenge for BMIs enabling bimanual control because they
cannot be designed simply by combining single-limb modules. Here,
we tested the ability of a bimanual BMI to enable rhesus monkeys to
control two avatar arms simultaneously.
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RESULTS

Large-scale recordings and experimental paradigms
We set out to discover whether large-scale cortical recordings could
provide sufficient neuronal signals to accurately control a bimanual
BMI (4, 20). We implanted volumetric multielectrode arrays in two
monkeys (768 microelectrodes in monkey C; 384 microelectrodes in
monkey M) (Fig. 1A) as described previously (20). Neural signals were
sorted using template matching algorithms within commercially avail-
able software (Plexon Inc.). In monkey C, we simultaneously sampled
(Fig. 1, C, E, and F) from the SMA (73 to 110 units in the left hemisphere,
0 to 20 units in the right hemisphere; ranges for all experiments), M1
(176 to 218 units in the left hemisphere, 45 to 62 units in the right hem-
isphere), primary somatosensory cortex (S1) (9 to 64 units in the left
hemisphere, 0 to 34 units in the right hemisphere), and posterior
parietal cortex (PPC) (0 to 4 units in the left hemisphere, 22 to 47 units
in the right hemisphere). In monkey M, we sampled fromM1 (80 to
90 units in the left hemisphere, 195 to 204 units in the right hemisphere)
and S1 (47 to 56 units in the left hemisphere, 127 to 149units in the right
hemisphere). The daily unit count neared 500 for each monkey, which
constitutes the highest number of simultaneously recorded units in
nonhuman primates to date (21). The high unit count for monkey M
persisted for 48months after the implantation surgery, and for monkey
C persisted for at least 18 months after the surgery (recordings are still
continuing in these two animals).

Using this large-scale BMI, both monkeys were able to directly con-
trol the simultaneous reaching movements performed by two avatar
arms. Moreover, these monkeys learned to operate the bimanual BMI
without producing overt movements of their own arms. A realistic, vir-
tual monkey avatar (fig. S1A) was chosen as the actuator for the bi-
manual BMI because in previous studies (14, 22) and experiments for
this study (Fig. 2), we observed that monkeys readily engaged in both
active control and passive observation of the avatar movements. Each
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monkey observed two avatar arms on a computer monitor from a first-
person perspective (Fig. 1B). A trial began with the appearance on the
screen of two square targets. Their position was the same in all trials,
and they served as the start positions for the avatar hands. The mon-
key had to place the avatar hands over their respective targets and hold
these positions for a delay, randomly drawn from a uniform distribu-
tion (400- to 1000-ms intervals, Fig. 1D). The two squares were then
replaced by two circular targets in 1 of 16 possible configurations (right,
left, up, or down relative to start position for each hand). At this point,
www.ScienceT
the monkey had to place both avatar hands over the targets indicated by
the two circles and hold the targets simultaneously for a minimum of
100 ms to receive a fruit juice reward. In the unimanual version of this
task, a single avatar arm had to reach for a single target.

The tasks were performed in three possible ways: joystick con-
trol, brain control with arm movements (BC with arms), and brain
control without arm movements (BC without arms). Both monkeys
learned to perform BC without arms, but through different learn-
ing sequences. Monkey C began with joystick control, during which
ranslationalMedicine.org 6 No
the right and left avatar arms were con-
trolled directly by movements of the two
joysticks (Fig. 1F) (18). Monkey C then
learned BC with arms, during which move-
ments of the avatar arms were controlled
directly by cortical activity, although the
monkey was permitted to continue ma-
nipulating the joysticks. Finally, monkey
C learned BC without arms, a mode of
operation where decoded brain activity
once again controlled avatar arm move-
ments, but now overt limb movements
were prevented by gently restraining both
arms. Monkey M did not use the joystick
in any task. Rather, this monkey’s task
training began by having it passively ob-
serve the avatar arms moving on the screen
as an initial step before learning BC with-
out arms. This type of BMI training has
clinical relevance for paralyzed subjects
who cannot produce any overt movements,
and it has been used in several human
studies (13, 23).

To set up BC with arms for monkey
C, we followed our previously established
routine (8, 10) of training the BMI de-
coder on joystick control data to extract
arm kinematics from cortical activity.
Daily sessions dedicated solely to joystick
control lasted 20 to 40 min. Brain control
sessions began with 5 to 7 min of the joy-
stick control task, before switching to BC
with arms for the final 20 to 40 min. De-
spite more complexities regarding inde-
pendent control of two virtual limbs, the
decoding accuracy for our bimanual BMI
was sufficient for online control (movie
S3) and matched the accuracy previously
reported for less challenging unimanual
BMIs (7, 8, 10, 24, 25).

Bimanual joystick control
Monkey C was trained to perform both
unimanual and bimanual joystick control
tasks very accurately (greater than 97% of
the trials were correct) (fig. S1, B to E, and
movies S1 and S2). Cortical recordings
collected from this monkey revealed wide-
spread neuronal modulations that reflected
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Fig. 1. Large-scale electrode implants and behavioral tasks. (A) Monkey C (left) and monkey M
(right) were chronically implanted with eight and four 96-channel arrays, respectively. (B) The monkey

is seated in front of a screen showing two virtual arms and uses either joystick movements or mod-
ulations in neural activity to control the avatar arms. (C) Four hundred forty-one sample waveforms
from typical monkey C recording sessions, with the color of the waveform indicating the recording
site [shown in (A)]. (D) Left to right: Trial sequence began with both hands holding a center target for
a random interval. Next, two peripheral targets appeared, which had to be reached to and held with
the respective hands to receive a juice reward. (E and F) Raster plot of spike events from 438 neurons
(y axis) over time (x axis) for a single unimanual (E) and bimanual (F) trial. Target location and position
traces of trial are indicated to the right of the raster panel.
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movement timing and direction (Figs. 1, E and F, and 3 to 5). Con-
sistent with previous studies (15, 16, 18), cortical activity frommultiple
areas was different between unimanual and bimanual movements (Figs.
3 and 4). In motor areas M1 (Fig. 3, A, B, E, and F) and SMA (Fig. 3, C,
D, G, and H), individual units (Fig. 3, A, C, E, and G) and neuronal
populations (Fig. 3, B, D, F, and H) alike exhibited directionally selec-
tive modulations during both unimanual and bimanual performance.
For each configuration of the pair of targets, we characterized neuro-
nal modulations as Dz—the difference between the movement epoch
(from 150 to 600 ms after target appearance) firing rate and baseline
rate, both expressed in normalized units (z scores). Normalization to z
scores was applied to each unit’s firing rate before any grouping or
averaging of individual trials. Average modulation for all target posi-
tions was quantified as absolute value of Dz averaged for all target po-
sitions (|Dz|). Directional selectivity was measured as the SD of Dz for
different target positions, s(Dz).

The transition from unimanual to bimanual movements (table S1)
induced several effects in M1 and SMA. First, we observed a promi-
nent increase in |Dz| during bimanual movements by 76.7 and 34.6%
for left M1 and right M1, respectively, and 35.8 and 37.9% for left and
right SMA (P < 0.01, t test). M1 neurons exhibited clear preference for
the contralateral rather than the ipsilateral arm during unimanual per-
formance, both in terms of overall modulations (28.3% increase in |Dz|
for contralateral versus ipsilateral arm; P < 0.01) and in terms of tuning
depth [22.3% increase in s(Dz)]. An opposite, ipsilateral preference was
observed for SMA [19.1% decrease in |Dz| and 11.1% decrease in s(Dz);
P < 0.01]. For both M1 and SMA, directional tuning depth during the
bimanual task was about equal for the left and right arm [left s(Dz): 0.08;
right s(Dz): 0.09; P > 0.01]. Notably, SMA was the only area where more
neurons were tuned to both arms after a transition from unimanual to
bimanual movements (P < 0.01) (Fig. 4A). In addition to changes in
overall modulations and directional tuning depth, bimanual control
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Fig. 3. Modulation of cortical neurons during manually performed
unimanual and bimanual movements. (A) Representative left M1 neu-
ron peri-event time histogram (PETH) aligned on target appearance
(gray line) for each of 16 left and right target location combinations dur-
ing bimanual movements. Below the 4 × 4 grid are corresponding
PETHs for the same neuron during unimanual trials in each of the four
directions. (B) Same layout as (A) for the population of left M1 neurons.
Each row of each color plot panel represents a single neuron, and the
pixel color is the normalized firing rate or z score (color scale at bot-
tom). (C and D) Representative neuron (C) and neuronal population (D)
in the SMA of the brain. (E to H) Dz for each of the four movement
directions for unimanual (red) and bimanual (blue) trials for the left (top)
and right (bottom) arms: for one M1 neuron (E), for a population of M1
neurons (F), for one SMA neuron (G), and for a population of SMA neu-
rons (H).
ranslationalMedicine.org 6 November 2013 Vol 5 Issue 210 210ra154 3



R E S EARCH ART I C L E
resulted in changes in neuronal preferred directions, which shifted be-
tween the unimanual and bimanual conditions by 53.1 ± 4.0° (mean ±
SEM) for the contralateral arm and 66.0 ± 5.4° for the ipsilateral arm
(Fig. 4, B and C).

Offline decoding of bimanual movements with
unscented Kalman filter
The unscented Kalman filter (UKF) (24) was selected for the BMI de-
coder in this study. The UKF is a decoding algorithm that has been
used previously to extract motor commands from brain activity to
control a cursor (24) or a virtual arm (14) in real time. The UKF repre-
sents both the reaching parameters, such as position and velocity (state
model), and their nonlinear relationship to neuronal rates (tuning mod-
el). Additionally, it incorporates a history of neuronal rates (the higher
the UKF order, the richer the history). Here, the UKF was updated
every 100 ms based on the previous state and the neuronal activity
recordings. The UKF was first applied to cortical recordings obtained
during the joystick control task in monkey C. To decode the position
of one arm during unimanual movements, we used a UKF with a two-
dimensional (2D) output (X and Y coordinates of the hand; Fig. 5, A
and E). To decode bimanual movements, we applied either two
www.ScienceT
separate 2D UKFs (Fig. 5B) or a UKF with a 4D output (X and Y
for both hands; Fig. 5, D and F).

The complexity of neuronal representations of bimanual movements
became apparent from the neuron-dropping curves (8, 10). Neuron-
dropping curves describe the deterioration of decoding accuracy as neu-
rons are removed (dropped) from the population used for decoding.
They are a useful analytical method for showing the effect of neural en-
semble size on the ability to decode motor characteristics, measured as
correlation coefficient r. Here, this method clearly indicated that more
neurons were needed to achieve the same decoding accuracy for each
arm during the bimanual task than during the unimanual task (com-
pare Fig. 5A with Fig. 5B). For example, to achieve decoding accuracy of
r = 0.5 with the 2D UKF, a mean of 80 neurons (drawn from the full
population) were needed for unimanual hand control and 145 neurons
for bimanual hand control, despite using the same 2D UKF for each
hand. The decoding accuracy, quantified as r, was proportional to the
logarithm of neuron count in each case (Fig. 5, A to D). Additionally,
bimanual movements required a longer time to train the UKF than uni-
manual movements (fig. S2A). Furthermore, individual neurons more
strongly contributed to the decoding of one of the arms when move-
ments were unimanual, but more homogeneously represented each
arm during bimanual movements (fig. S2, B and C). Both distribu-
tions were leftward shifted from the null distribution (fig. S2D) col-
lected from the same recording session but during periods without
task execution (P < 0.05, both right and left arms, Wilcoxon signed
rank test). We obtained better bimanual prediction accuracy when
the 2D UKF was trained on bimanual movements compared to the
same model trained on unimanual movements of each arm separately
(fig. S2E, P < 0.01). Similarly, training the UKF on bimanual move-
ments yielded more accurate predictions for bimanual than for uni-
manual movements (fig. S2F, P < 0.01).

During bimanual joystick control, the position of the right and
left arms was decoded from multi-area ensemble activity with high
accuracy (r = 0.85 ± 0.02 and r = 0.62 ± 0.03, fig. S4C). Looking at
cortical areas separately, the best decoding was achieved with M1
neurons (n = 245; r = 0.73 ± 0.03, average of two-arm r values). A
less numerous population of SMA neurons performed worse (n = 73;
r = 0.22 ± 0.02), but the contribution from SMA and other areas to the
overall predictions was still evident from the rise of the entire ensem-
ble dropping curve beyond the maximum M1 performance, as well as
the steady rise of the individual area dropping curves (Fig. 5, A, B, and
D). Moreover, when UKF predictions were run for individual neurons
and all neurons were ranked by the accuracy of these predictions, many
non-M1 neurons received high rankings. For example, of the 50 top-
ranked neurons, 27 (54%) were fromM1, 16 (32%) from SMA, 4 (8%)
from PPC, and 3 (6%) from S1. Therefore, although M1 neurons con-
tributed the greatest amount to kinematic predictions, non-M1 areas
such as SMA, PPC, and S1 provided informative signals as well.

In addition to predictions of the coordinates of two hands, the dis-
tance between hands was represented with similar accuracy (Fig. 5C)
when derived from the predictions of two hand positions made with
the 4D UKF model.

Brain control of bimanual movements with UKF
After testing the 4D UKF on monkey C’s joystick control data and
finding that it consistently outperformed the 2D UKF on the joystick
control data (Fig. 5D and fig. S3A), we chose this decoder for real-time
BMI control. This decoder incorporated kinematics of both arms in
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the state variables, thus allowing the algorithm to jointly represent
both arms in a single model. Even with this improved decoder, switch-
ing from hand control (fig. S1E) to BC with arms resulted in a sharp
drop in monkey C’s performance level during initial sessions (Fig. 6C).
However, over the next 24 sessions of BC with arms, monkey C’s pro-
ficiency improved substantially in both bimanual task performance
(that is, percent of trials where both arms reached their targets with-
in the maximal allowed trial duration; Fig. 6C) and individual arm
performance (that is, percent of trials where a single arm reached its
correct target within the same duration; Fig. 6D). Additional improve-
ment in performance was achieved after the decoder was upgraded
from a first-order UKF to a fifth-order UKF (Fig. 6C and fig. S3, B
to D). Changing from a first to a fifth order provided a more detailed
history of previous neuronal activity to be incorporated into the decoder.
By the end of BC with arms training, a consistent level of performance
exceeded 70% correct trials (Fig. 6C), including more than 90% correct
trials for each arm individually (Fig. 6D).
www.ScienceTranslationalMedicine.org 6 No
Our BC without arms experiments
were conducted in both monkeys. They
were designed to match the practical needs
of paralyzed people who have to learn
BMI control without being able to produce
overt upper limb movements. Previous-
ly, to reach the same goal, single-effector
BMI studies have used a coadaptive de-
coding model with iteratively updated
tuning properties (25), requested subjects
to imagine movements (13, 26) or had
them passively observe effector movements
(27, 28). In our study, a passive observation
paradigm became the basis for how the
BMI decoder was trained without requir-
ing the monkeys to produce overt arm
movements. For these experiments, we
had the monkey passively observe the
movements of the avatar while its arms
were gently restrained (Fig. 6A). The screen
displayed the two avatar arms moving in
center-out trajectories toward the targets.
The trajectories were either replayed from
a previous joystick control session (monkey
C) or preprogrammed using estimates of
kinematic parameters (monkey M). These
bimanual passive observation movements
were clearly reflected by cortical modu-
lations (fig. S4, A to C). Neuronal mod-
ulations to passive observations do not
appear to be explained by muscle activity
(fig. S5, A and B). To explore these neu-
ronal modulations, we applied the 4D
UKF to extract passive observation move-
ments of the avatar arms from cortical ac-
tivity (Fig. 6B). The accuracy of these
extractions was different for the left and
right avatar arms (monkey C: r = 0.46 ±
0.05 for the left avatar arm versus r =
0.12 ± 0.05 for the right; monkey M: r =
0.47 ± 0.03 versus r = 0.23 ± 0.02) (fig.
S4C) and fluctuated in time (r in the range of −0.29 to 0.64; fig. S6).
The running accuracies for the two arms were weakly positively cor-
related between themselves (correlation coefficient of 0.25 ± 0.12 in mon-
key C and 0.31 ± 0.14 in monkey M, across all sessions; mean ± SEM),
likely reflecting drifts in the level of overall attention to both arms. One
could speculate in addition that attention was occasionally unevenly dis-
tributed between the two avatar arms (for example, negative correlation
of running accuracies during the interval 155 to 200 s in fig. S6), but this
issue will have to be more carefully investigated in future studies using
more precise eye-tracking methods.

After the UKF was trained on 5 to 7 min of passive observation, the
mode of operation was switched to BC without arms for 25 to 45 min
(movie S4). The monkeys controlled the avatar with their cortical activ-
ity while still fully arm-restrained. Both monkeys rapidly improved the
performance for each arm in the bimanual BC without arms task within
5 to 10 sessions (monkey C rising from 43 to 79%; monkey M from
15 to 62%; Fig. 6C, black circles). Similar to the passive observation
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pattern (Fig. 6, E and F, fig. S4C), the performance accuracy for the
left and right arms was unequal during the BC without arms task
(monkey C: left, 98.5%; right, 94.4%; monkey M: left, 96.4%; right,
77.7%; average over the last three BC without arms sessions). The
first four BC without arms sessions for monkey M (open circles, Fig.
6C) contained fewer than 10 trials which met the minimum attention
threshold and were counted as zero accuracy. To compute a chance
performance level for each mode of control, we performed a shuffled-
target analysis (Fig. 6C). Cursor trajectories of each trial were replayed
with peripheral target locations drawn from a randomly shuffled set of
target combinations. Correct performance was defined the same way
as in online sessions, where both center and peripheral targets must
be acquired within the 10-s timeout limit. Chance-level performance
derived from the shuffle test was very low for BC with arms data (less
than 10% correct trials, Fig. 6C) and slightly higher but still far below
monkey performance for BC without arms data (20 to 30% for mon-
key C, 10 to 20% for monkey M; Fig. 6C). For 20 of the 21 BC without
arms sessions, monkey performance was statistically greater than
chance performance (P < 0.05, t test), the lone exception being the
second session for monkey M.

To obtain further evidence that cortical modulations during brain
control sessions reflected the goal of the bimanual task, we evaluated
how cortical ensembles represented the location of targets on each
trial. It was essential that we decoded target position instead of posi-
tion or velocity of the avatar arms in this analysis. Unlike the position
of the avatar arms, target locations were not algorithmically linked to
neuronal activity during real-time BMI control. Therefore, this analy-
sis was not confounded by the fact that neuronal tuning to arm kin-
ematics was preset by the UKF tuning model. Such a confound would
have been a hindrance if we attempted to derive tuning from the re-
lationship between movement direction and neuronal rates. In our ex-
periments, the target locations were neither a parameter of the UKF
nor its output; thus, when we examined how those locations were
tracked by cortical activity, we were certain that we dealt with a true
representation of movement goals and not with an epiphenomenon
of the real-time BMI. Note that the UKF model may have influenced
this analysis indirectly because it drove the avatar arms, and the position
of the arms likely affected the neuronal representation of the targets.
We used a k-nearest neighbor (k-NN) classifier to extract target loca-
tions from cortical modulations (Fig. 6, E to G). To quantify cortical re-
presentation of each target, which potentially could be different for
neurons from different hemispheres and/or areas, we used two clas-
sifiers, one for each target. Both target locations were clearly reflected
by cortical ensembles, starting with the appearance of the targets and
continuing throughout the trial (Fig. 6, E to G). Cortical activity re-
presented the targets during both BC without arms sessions (Fig. 6, F
and G) and passive observation sessions (Fig. 6E). The accuracy of
each representation was measured as fraction correct. Using k-NN,
we decoded the target location of the left arm more effectively than
the right arm in both monkeys (Fig. 6F). This matches the behav-
ioral results from Fig. 6D, which showed better BC without arms
performance with the left hand of both monkeys as well. Despite
this difference, both right and left target locations could be decoded
at significant levels within the same epoch after target appearance.
This dual representation persisted through the reaction time and
movement epoch of a typical trial (Fig. 6, E and F).

We next assessed the effect of the number of recorded neurons
and relative contributions of cortical areas on k-NN decoding of target
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Fig. 6. Passive observation and brain control paradigms. (A) A mon-
key was seated in front of a screen with both arms gently restrained
and covered by an opaque material during passive observation and BC
without arms experiments. (B) Actual left and right arm X position
(black) compared with predicted X position (red) for passive observa-
tion sessions. Pearson’s correlation, r, is indicated. (C) Performance of
monkey C (left) and monkey M (right) quantified as fraction correct
trials. Shown separately for monkey C are different decoding model
parameter settings (red, blue markers) as well as brain control without
arm movement (BC without arms) sessions (black, both monkeys). Ses-
sions with less than 10 attempted trials were set to zero because of in-
sufficient data (open circles). (D) Fraction of trials where the left arm
(green circles) and right arm (blue circles) acquired their respective
target during brain control. Linear fit for learning trends of each par-
adigm is shown in (C) and (D). (E and F) Fraction of correct predic-
tions by k-NN of target location for each arm (blue/green) over the
trial period during both passive observation (E) and BC without arms
(F) in both monkey C (left column) and monkey M (right column). (G)
Mean k-NN target prediction fraction correct from neuron-dropping
curves separated by cortical area for each monkey [same columns as
(E) and (F)].
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position. Similar to Fig. 6F, k-NN decoded left and right target loca-
tions during the BC without arms task. The mean prediction accuracy
for both arms improved approximately linearly with the logarithm of
neuronal ensemble size (for example, for monkey M, M1 ensembles:
fraction correct = 0.34 for n = 5, fraction correct = 0.37 for n = 10, and
fraction correct = 0.43 for n = 100, with a chance level of 0.25; Fig. 6G,
right). This followed the same trend observed for prediction of arm
kinematics (Fig. 5, A to D). For monkey M, with microelectrodes im-
planted in both leg and arm M1 areas, the targets were better repre-
sented by neurons located in the arm area (fraction correct: 0.43 ±
0.02, n = 100) compared to the neurons in the leg area (fraction cor-
rect: 0.31 ± 0.03, n = 100; P < 0.01). Neurons in the leg area of M1 did,
however, contribute to predicting target location: a population of
about 100 neurons in the leg area of M1 rivaled in accuracy 100 neu-
rons located in the S1 arm region.

Neuronal plasticity during BC without arms training
In parallel with each monkey’s learning of the BC without arms task,
we observed plastic changes in the firing patterns of cortical ensem-
bles. These changes were particularly clear in the functional reorgani-
zation of the cortical representation of the avatar during the passive
observation task, which was measured at the beginning of each session
of BC without arms (Fig. 7, A and B). The decoding accuracy of pas-
sively observed avatar kinematics (measured as prediction r) was clearly
enhanced as the training progressed.

Furthermore, we observed a gradual reduction [P < 0.01, anal-
ysis of variance (ANOVA)] in firing rate correlations among cortical
neurons as animals were training in the BC without arms task (Fig. 7,
B to E). During early BC without arms sessions, correlations between
neurons were 1.7 to 2.2 times greater than during passive observation
periods tested on the same day. Over the next few days, however, these
cortical correlations decreased until they reached the same level as
during passive observation (Fig. 7B). During this reduction, correla-
tions between neurons from the same hemisphere (solid red line,
Fig. 7C) and the same cortical area (solid blue line) remained higher
than the correlations between neurons from different hemispheres or
areas (dashed lines). An ANOVA test showed that both area and
hemispheric relationships were factors related to the decrease in cor-
relation (P < 0.01). In both monkeys, there was a greater proportional
decrease in cross-hemisphere correlation during BC without arms
learning than within-hemisphere correlation (monkey C: 85.2% reduc-
tion across hemispheres versus 54.0% within hemisphere; monkey M:
56.6% across hemispheres versus 36.1% within hemisphere). Similarly,
correlations between cortical areas (same hemisphere) decreased more
than those within an area (monkey C: 76.6% reduction between cortical
areas versus 54.0% within cortical area; monkey M: 53.7% reduction
between cortical areas versus 29.9% within cortical area).
DISCUSSION

Our findings suggest that BMI technology can be applied to the chal-
lenging task of enabling bimanual control in subjects who do not
produce overt arm movements. The current study enhances the degree
of sophistication of an upper limb BMI by enabling simultaneous control of
two arms. This was achieved by introducing a bimanual decoding/training
paradigm—one that takes full advantage of large-scale simultaneous
bihemispheric chronic cortical recordings of up to 500 neurons, a virtual
www.ScienceT
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observation and brain control without arm movement (BC without arms)
training sessions. (C) Mean inter- and intrahemispheric (red) and inter-
and intra-area (blue) correlation r̄ versus session. (D) Neuron versus neu-
ron correlation indicated by pixel color for two monkeys on the first (left)
and last (right) day of BC without arms training. Within each panel, neu-
rons are sorted by cortical area and mean correlation strength. (E) Same
as (D), except for monkey M. (A to C) Left column, monkey C; right column,
monkey M.
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reality training environment, an optimal bimanual decoding
algorithm, and the recently discovered (22) phenomenon of visually
driven cross-modal cortical plasticity.

From our earlier studies, we have argued that BMIs provide impor-
tant insights into the physiological principles that govern the function
of brain circuits (3). In this context, the present study tested whether
these principles apply to bimanual motor control. To examine the role
of neural ensembles for bimanual control, we used simultaneous, very
large scale recordings from fronto-parietal cortical ensembles (2, 3)
and obtained extractions of bimanual motor parameters. Neuron-
dropping curves constructed from both manual control data (Fig. 5,
A to D) and real-time BC without arms data (Fig. 6G) indicate that
the accuracy of neural decoding steadily and linearly improves with
the logarithm of neuronal ensemble size. With our distributed mul-
tisite recording approach, we demonstrated the representation of bi-
manual movements of several fronto-parietal cortical areas. This result
is consistent with previous neurophysiological studies of bimanual
motor control (15–19). From our data, the M1 contribution to the
decoding was the most substantial, which is likely due to a higher
proportion of task-related neurons. Supplementing the M1 ensem-
ble (red line in Fig. 5, A to D) with neuronal data from the other
areas (black line) further improved the decoding. Furthermore,
non-M1 areas such as PPC (29) and dorsal premotor cortex (PMd)
(8, 10, 30) are reliable sources for BMI decoding with an overlapping
but often distinct role from M1 output (31–33). This is especially true
in an area such as SMA, which is involved in bimanual coordination
(17, 19).

Our results support a highly distributed representation of bimanual
movements by cortical ensembles, with individual neurons and neural
populations representing both avatar arms simultaneously (17–19).
Most neurons recorded in this study contributed to the predictions
of kinematics of each arm (fig. S2, B to D). Moreover, during online
BMI control of bimanual movements, such multiplexing of the kine-
matics of both arms by individual neurons became even more prom-
inent (fig. S2C).

It should be emphasized that the distributed cortical representation
of bimanual movements could not be described as a linear superpo-
sition of the representations of unimanual movements. Most clear in
SMA and M1 brain regions (Fig. 3), but also evident in S1 and PPC
(Fig. 4), the activity of individual neurons and neural populations dur-
ing bimanual tasks was not a weighted sum of unimanual patterns
derived from data collected from right and left arms independently.
These observations point to an existence of a separate, bimanual state
of the network in which modulations represent the movements of
both arms simultaneously by way of nonlinear transformations of
the separate neural tuning profiles of each arm (Fig. 3, A to D). At
this point, we can only speculate about the function of this nonlinearity.
From one moment to the next, the two arms need to be able to switch
between unimanual and bimanual functionality. During unimanual
control, it is important that the motor drive to the nonworking arm
is inhibited. Conversely, during two-arm behaviors, it becomes impor-
tant that a motor program in one arm does not interfere with the other
arm and does not evoke unwanted synergies in both arms, but rather
permits a degree of independence. Nonlinear phenomena have been re-
ported at the behavioral level in bimanual motor control studies, which
showed that motor systems can choose to favor stability (interlimb co-
ordination, nonlinear) over more unstable (interlimb independence,
linear) (34–36) motor programs in a task-dependent way.
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Overall, our findings provide support for the notion that very large
neuronal ensembles, not single neurons, may define the true physiolog-
ical module underlying normal motor functionality (2, 3, 10, 14, 37).
This suggests that small cortical neuronal samples may be insufficiently
informative to control complex motor behaviors using a BMI (9, 25, 38, 39),
but BMIs with few neurons could be useful test beds for experimenta-
tion with less challenging motor tasks. Although we did not attempt
bimanual control with just a few neurons in this study, we probed small
ensembles indirectly by using a neuron-dropping analysis using a k-NN
classifier to estimate the contribution of ensemble size to target repre-
sentation during BC without arms (Fig. 6, E to G). This analysis showed
that large ensembles always performed better.

Our study provides new insights into the plasticity of cortical en-
sembles. Previously, we demonstrated that cortical ensembles can
undergo substantial plasticity during learning of BMI tasks (10). We
even observed an emergence of visually evoked responses in S1 and
M1 when attended to virtual avatar arms (14, 22). Here, we observed
improvements in performance as the monkeys enacted real-time BMI
control of bimanual movements. These improvements were accompa-
nied by a steady decline of correlated neural activity throughout the
four recorded cortical areas and in both hemispheres (Fig. 7, B to E).
Previous work (3, 40, 41) has identified that cortical modulations and
interneuronal correlations initially increase during BMI operation,
which have been suggested to serve a role in the initial learning of
unfamiliar tasks. Additionally, we have reported a decrease in variance
associated with neuronal modulations during BC without arms learn-
ing (40). Still, the potential function served by the decrease in neuronal
correlations observed in our study and others (42, 43) remains to be
fully understood. The most basic interpretation of this result is that
correlated activity benefits early learning, but firing rate independence
sustains later stages of the learning process when independent control
of both arms is learned. Notably, changes were observed in a multi-
tude of fronto-parietal structures across both cortical hemispheres.

Previously, we reported elevated correlated activity between neu-
rons (3) and increased neuronal modulations unrelated to movement
kinematics (40) during early sessions of unimanual BC without arms.
A similar change in neural correlations was reported in human electro-
encephalogram (EEG) studies in which interhemispheric EEG co-
herence decreased during bimanual task learning (42, 43). Thus, our
monkey data indicate that inter-area and interhemispheric correlations
may transiently increase during the initial learning phase and then de-
crease after subjects have perfected bimanual motor behavior.

Our findings demonstrate a BMI that controls movements of two
limbs in real time, using neuronal ensemble data recorded from both
cerebral hemispheres. Our data may contribute to the development of
future clinical neuroprosthetics systems aimed at restoring bimanual
motor behaviors. A key observation is that the inclusion of two limbs
within a single BMI decoding paradigm produced the best predictions
and that this approach demonstrated that both arms could be con-
trolled independently. The importance of bimanual movements in
our everyday activities and specialized skills cannot be overstated
(44). Future clinical applications of BMIs aimed at restoring mobility
in paralyzed patients will benefit greatly from the incorporation of
multiple limbs. It still remains to be tested how well BMIs would control
motor activities requiring precise interlimb coordination. From this dem-
onstration of BMI control over independent movements in two arms, it is
clear that performance would benefit from the inclusion of large popula-
tions of neurons and multiple areas in both hemispheres.
ranslationalMedicine.org 6 November 2013 Vol 5 Issue 210 210ra154 8
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Another key finding from the current study is that our bimanual
BMI allowed four degrees of freedom to be decoded across two limbs.
In a practical sense, our results suggest that to reproduce complex body
movements using BMI control, the contributions of separate but func-
tionally related muscle groups should be modeled jointly, not separately.
Future studies will have to clarify such conjoint representation for a
broader range of bimanual movements.

Another feature of our study with implications for neuroprosthet-
ics was the utilization of a virtual environment within which a subject
would control realistic avatar arms both during joystick control and
brain control tasks. Decoding arm movements from neural activity of
both monkeys proved robust and persistent across many sessions,
even when subjects passively observed avatar arm movements (Fig.
7A). In future clinical BMI applications, particularly in those invol-
ving patients suffering from devastating levels of paralysis, the use of
realistic, intuitive virtual limb effectors may become a critical com-
ponent of the BMI training. In upper limb control, arm-centric spatial
reference frames play a pivotal role in goal-oriented movements (45, 46)
and may provide a basis for the perception of body schema (47). Even
when the armmovements were simply observed, sensorimotor (14) and
premotor (47, 48) neurons in macaques have been shown to encode limb
kinematics. Within a BMI context, providing the subject with virtual
arms, instead of cursor circles, could tap into the existing, arm-centric
biological framework (45–49) and enhance the process of experience-
dependent plasticity, which is believed to underlie the mechanism
through which subjects learn to operate a BMI. Preliminary results from
our laboratory (Fig. 2) provide an early indication that this difference
(cursor versus avatar arm) is evident to macaques. Therefore, it could
be further exploited in both behavioral and brain control research par-
adigms aimed at enhancing the user’s experience as they learn to op-
erate a BMI.

Overall, our study demonstrates that cortical large-scale recordings
can enable bimanual BMI operations in primates, a type of operation
that will be necessary for future advanced clinical neural prostheses.
MATERIALS AND METHODS

Study design
The objective of the study was to elucidate key differences in cortical
control between unimanual and bimanual movements and to imple-
ment a BMI paradigm based on real-time decoding of large-scale,
multi-area cortical recordings to produce control of two virtual arms
simultaneously. Furthermore, a BMI strategy was sought that required
no movements of the subjects’ own arms during the execution of bi-
manual movements. The study’s design conformed to the conven-
tional requirements for neurophysiological studies in nonhuman
primates. All studies were conducted with approved protocols from
the Duke University Institutional Animal Care and Use Committee
and were in accordance with the National Institutes of Health (NIH)
Guide for the Care and Use of Laboratory Animals. Two rhesus
monkeys were used and each was recorded for more than 19 days.
The major findings were replicated in both monkeys for multiple exper-
imental sessions. Statistical analyses of the data involved parametric and
nonparametric tests. ANOVA tests were used to analyze the influence
of multiple factors, followed by the appropriate post hoc comparisons.

The first monkey (monkey C; female; 6.2 kg) was overtrained for
12 months on unimanual and bimanual center-out reaching tasks
www.ScienceT
before the implantation surgery and the experiments in the present
study. The second monkey (monkey M; male; 10.6 kg) was extensively
trained before this study on a unimanual joystick task performed with
the left arm, but was never introduced to the bimanual joystick task.
Monkey C performed bimanual joystick experiments until reaching
greater than 95% correct trials on consecutive sessions. Monkey M
was intentionally naïve to the bimanual BMI task before passive ob-
servation experiments. Monkey C next began BC with arms
experiments, and such experiments continued for 24 sessions until
we observed consistent performance exceeding 75% correct. Both
monkeys participated in four experiments that were exclusively
passive observation of bimanual avatar movements. For all passive ob-
servation experiments, both arms were fully restrained. For the final
passive observation session of each monkey, electromyogram (EMG)
recordings of both arms were obtained. Next, both monkeys partici-
pated in BC without arms experiments. Monkey C reached proficiency
after 9 sessions, and monkey M after 15 sessions. BC without arms
experiments with fewer than 10 trials where the monkey attended
to the screen for a minimum of 90% of the trial were designated
as null performance and not included in subsequent analyses.

Task design
The avatar had been previously developed by our research group
(14) and used for reaching movements by assigning joystick or
BMI output to the position of the center of each hand (near the
base of the middle finger). This hand location was also used as
the reference point to indicate whether the hand was inside/outside
a target.

Bimanual joystick control trials began by moving the right and
left spring-loaded joysticks such that the right and left avatar hands
were placed inside the right and left center targets, respectively. The
center targets were 8-cm squares located in the center of the right
and left sides of the screen. Next, both hands had to simultaneously
remain inside these center targets for a hold interval randomly
drawn from a uniform distribution between 400 and 1000 ms. After
this hold, the center targets disappeared and two reach targets
appeared on the screen, one on each side of the screen. The objec-
tive was to reach with both hands to their respective targets. The
nearest edge of the peripheral target appeared at a fixed distance of
8 cm either left, right, above, or below the center target. The
peripheral targets were 8 cm in diameter during joystick control
and BC with arms experiments and were 10 cm in diameter during
BC without arms experiments. With four potential locations per
arm, there were 16 potential left/right combinations. Each combi-
nation was equally likely and was assigned randomly. Once both
targets were entered and both were simultaneously held for 100
ms, a juice reward was given to the monkey.

In two recording sessions, joystick control performance included
unimanual left, unimanual right, and bimanual trials. During this
paradigm, the first 150 trials were bimanual, then 150 unimanual left,
then 150 unimanual right, then 100 to 200 bimanual trials or until the
monkey voluntarily declined to continue the task. During unimanual
trials, only the single working arm was displayed on the computer
screen for the monkey. The avatar arm and targets continued to ap-
pear in the same locations, on the corresponding right or left half of
the screen. The door on the primate chair for the nonworking arm
was closed such that only the working arm could reach and manipu-
late the joystick.
ranslationalMedicine.org 6 November 2013 Vol 5 Issue 210 210ra154 9
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Passive observation experiment
During passive observation experiments, the monkey was seated in a
customized chair, which immobilized both arms and allowed minimal
movement of lower limbs. Arms were restrained to a foam-padded
shelf fixed at a comfortable and natural angle in front of the monkey
(Fig. 6A). The pronated arms were fastened to the shelf using secure
and foam-padded adjustable straps. Both monkey C and monkey M
were used for this experimental paradigm, although the observed
movements for the two differed slightly. Monkey C observed replayed
arm movements from its previous bimanual center-out joystick con-
trol session. Monkey M did not have previous joystick control sessions
on this task and instead observed movements of the avatar limbs
along ideal trajectories. These automated movements were enacted
with a realistic distribution of reaction times and peak velocities, as
well as acceleration profiles. We obtained the distribution of typical
reaction times of monkey M for each arm from previous unimanual
data. The automated passive observation movements were initiated
after a reaction time drawn from a distribution with the same mean
and variance as the monkey’s own typical reaction time distribution.
The same steps were taken to obtain realistic mean reach velocities
from previous unimanual training. Acceleration and deceleration pe-
riods and the beginning and end of the reach were added to make the
generated movement look natural and smooth. Passive observation
trials followed the same task sequence as the bimanual center-out
joystick control task. The monkey was rewarded when both avatar
arms moved into and held its corresponding peripheral target. In addi-
tion to target-based rewards, a smaller juice reward quantity was dispensed
at random intervals between 2 and 8 s to encourage the monkey to
look at the screen throughout the trial.

To track the monkeys’ attention to the task during nonjoystick
experiments, we implemented an eye-tracking system. A single camera
above the display screen was used to record the monkey. A modified
version of the TLD (tracking-learning-detection) tracking algorithm
(50) was used to track eye position in real time and identify periods
of the experiment when the monkey did not attend to the screen. In
addition, persistent attention to the screen was required to receive juice
rewards throughout the experiment. For offline analysis, trials were
separated into attended and unattended trials. To be considered an at-
tended trial, the monkey’s eyes must be attending to the screen for a
minimum of 90% of the trial epoch.

Both monkey C and monkey M performed four 20- to 30-min
passive observation sessions. After these experiments, passive observa-
tion was used on a daily basis for 5 to 7 min at the beginning of each
experiment to train the decoding model. For both monkeys, the fourth
passive observation session was identical to the previous three except
for EMG electrodes placed on the forearm flexor and extensor, biceps,
and triceps of each arm.

Brain control experiment
The first phase of brain control experiments is called brain control
with arm movements (BC with arms) and was completed by mon-
key C immediately after bimanual joystick control sessions. The de-
coding model for BC with arms was trained on data collected during
5 to 7 min of joystick control trials at the beginning of the experi-
ment. Next, the model was fit and movements of the avatar right and
left arm were under the control of the decoding algorithm. The arms
remained unrestrained, and the hands continued to manipulate the
joysticks. Monkey C performed 24 BC with arms sessions within a
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span of 7 weeks. The first 11 BC with arms sessions used different
model parameters from those used in the final 13 BC with arms ses-
sions (see “Neural decoding” section).

The latter phase of brain control, brain control without arm move-
ments (BC without arms), began after both monkey C and monkey M
completed the four passive observation–only experiments. Monkey M
began BC without arms immediately after session 4, but monkey C
began about 4 weeks after day 1 of passive observation. During BC with-
out arms, the monkeys’ arms were restrained in the same way as for
passive observation. The decoding model for BC without arms was re-
trained each session with 5 to 7 min of passive observation trials. The
observed movements of this initial 5- to 7-min training window were gen-
erated in the same way as those in passive observation–only experiments.
Next, the model was fit and the movements of the avatar were controlled
by the decoding algorithm. The major difference with BC without arms
from BC with arms was that during the brain control phase, the arms
were completely restrained and covered.

Surgery and electrode implantation
Monkey C was implanted about 3 months before the beginning of the
experiments of this study. Eight 96-channel multielectrode microwire
arrays (768 total channels) were implanted into bilateral SMA, M1, S1,
PMd, and PPC using previously described surgical methods (20, 51).
Electrode arrays were organized as 4 × 10 grids, with each shaft com-
posed of two or three polyimide-insulated stainless steel microwire
electrodes with exposed tips. Within the same shaft, three microwires
were staggered by 400 mm in depth. Lateral spacing between shafts
was 1 mm center to center. Microelectrodes were lowered using inde-
pendent microdrives such that the deepest microwire was 2 mm below
the cortical surface. Only 384 of the 768 channels were recorded at a
given time because of recording system limitations at the time. PMd
arrays resulted in a low number of quality units and therefore were
not included in the 384 selected channels.

Monkey M was implanted 42 months before the beginning of the
experiments of this study. Arm and leg M1 and S1 were implanted in
both hemispheres for a total of eight areas, each with 48 electrodes.
During experiments, all 384 channels were recorded; however, only
armM1/S1 channels were used for both online and offline predictions.
Each 48-channel implant was composed of a 4 × 4 grid, with three
electrodes per cannula staggered at 400 mm.

Neurophysiological analysis of joystick control trials
Modulations in cortical neuronal activity were analyzed using PETHs.
Spike timestamps for each neuron were first put into 50-ms bins, and
the activity of each neuron was normalized by subtracting the mean
bin count and dividing by the SD, which is statistically equivalent to
the z score. This normalization transforms the activity of each neuron
to represent modulations as the fraction of overall modulations. Single-
neuron PETHs were computed in terms of firing rate (Hz); however,
population analysis used the normalized mean firing rate to facilitate
comparison between neurons with different baseline firing rates. After
the normalized mean firing rate was computed for each neuron, event-
related modulations were analyzed by constructing PETHs. Movement-
related modulations were computed as the difference between normalized
mean firing rate during the typical movement epoch (150 to 600 ms
poststimulus) and normalized mean firing rate during the baseline
epoch (600 to 100 ms prestimulus). This represents a difference in z
scores and is referred to as Dz in the analysis of this study. We computed
nslationalMedicine.org 6 November 2013 Vol 5 Issue 210 210ra154 10
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Dz on a single-trial basis and fit multiple linear regression models to
compute parameters of directional tuning:

Dz ¼ A*Lx þ B*Ly þ C*Rx þ D*Ry ð1Þ
where (Lx, Ly) and (Rx, Ry) are (x,y) positions of the left and right tar-
gets on each trial. Coefficients A, B, C, and D were fit for each neuron
with regression. Preferred direction of each hand for each neuron was
computed using vectors ð→A,→B Þ and ð→C,→D Þ.

A second metric based on Dz was used to evaluate depth of direction-
al tuning. A mean Dz was computed for each neuron, for each direction.
Tuning depth was measured as the SD of the mean Dz distribution across
different directions. Overall movement-related modulations were esti-
mated as the mean of Dz absolute value.

For comparisons between unimanual and bimanual modulation,
all data were collected within the same session. The bimanual and uni-
manual PETHs shown in Fig. 3 represent neural activity normalized
by the same mean and SD of that single session. Within unimanual
trials, Eq. 1 was modified to only compute coefficients reflecting mod-
ulations of the working arm.

Neurophysiological analysis of passive observation
and brain control
Similar analyses were also applied to passive observation and brain
control experiment data. Initially, PETHs aligned on target presen-
tation, as described previously, were computed. From the PETH, the
modulation strength Dz was computed for each area and for each of
the 16 potential movement directions. In addition, we computed Dz in
this way for each passive observation experiment day to observe the
short- and long-term changes in this parameter. When computed as
the normalized mean firing rate (fig. S4), this metric gives an estima-
tion of the population response amplitude as a z score, thus facilitating
comparisons across sessions regardless of the persistence of all recorded
units from the previous session.

A second neurophysiological analysis used during passive observa-
tion and brain control experiments was neuronal spike count correla-
tion. Binned (25-ms bin size) neural activity patterns of single neurons
of full experiments (not single trials, as in PETH analysis) were com-
pared against the activity profiles of all other neurons in the population
in a pairwise fashion. The comparison between neuron activity profiles
was quantified as the Pearson’s correlation coefficient r between equal
length time series a and b as in Eq. 2:

rða, bÞ ¼ corrða, bÞ ¼ ∑n

i¼1ðai − aÞðbi − bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1ðai − a
q

Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1ðbi − b
q

Þ2
ð2Þ
where n is the length of a and b. Spike count correlation was quantified
as the mean r of all pairwise comparisons, quantified as in Eq. 3:

r ¼ meanð∀ni ∈ Y, ∀nj ∈ Y, corrðni, njÞÞ ð3Þ
where Y is the ensemble of all recorded neurons and corr(ni, nj) is
defined in Eq. 2. We extended this analysis to identify correlations
within a cortical area (for example, an M1 neuron correlated with
another M1 neuron) as well as between areas (for example, M1 neu-
ron and SMA neuron), as well as intrahemisphere versus interhemi-
sphere. Only cortical activity during periods of the session when the
www.ScienceTra
monkey was attending to the screen was used for spike count corre-
lation comparisons.

Neural decoding
Right and left arm kinematics were decoded using a UKF as described
elsewhere (24). The same model was used for both offline and online
predictions with three past taps and two future taps of 100-ms binned
neural activity. During the first 11 sessions of BC with arms, a first-
order UKF was used with only a single past tap of neural activity (Fig.
6C, red circles). Later, BC with arms sessions and all BC without arms
sessions used a fifth-order UKF. These settings were determined em-
pirically by offline comparison (fig. S3), as well as from previous stu-
dies in our laboratory (14). Offline predictions were computed for
both active and passive observation experiments in a similar way. Off-
line, we used 6 min of neural data collected during attempted trials
(for joystick control) or while attending to the screen (passive obser-
vation) to fit the UKF tuning model. For unimanual offline analysis,
the 2D tuning model fit binned neural activity y(t) as a function of
single-arm (x,y) position, velocity, and quadratic terms of both as
in Eq. 4:

yðtÞ ¼ ½ b1 b2 �
�
posxðtÞ
posyðtÞ

�
þ b3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
posxðtÞ2 þ posyðtÞ2

q
þ

½ b4 b5 �
�
velxðtÞ
velyðtÞ

�
þ b6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
velxðtÞ2 þ velyðtÞ2

q
ð4Þ

For bimanual experiments, both joystick control and passive observa-
tion, a 4D extension was made to the quadratic tuning model of Eq. 4.
More specifically, y(t)was now formulated as a function of bimanual (x,y)
positions, velocities, and quadratic terms of each as in Eq. 5:

yðtÞ ¼ ½ b1 b2 b3 b4 �

"
posxLðtÞ
posyLðtÞ
posxRðtÞ
posyRðtÞ

#
þ

½ b5 b6 �

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
posxLðtÞ2 þ posyLðtÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
posxRðtÞ2 þ posyRðtÞ2

q
#

þ

½ b7 b8 b9 b10 �

"
velxLðtÞ
velyLðtÞ
velxRðtÞ
velyRðtÞ

#
þ

½ b11 b12 �

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
velxLðtÞ2 þ velyLðtÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
velxRðtÞ2 þ velyRðtÞ2

q
#

ð5Þ

Weperformed several preliminary analyses to optimize the amount of
training data required for each model and generally found that 5 to 7
minwas sufficient and, beyond this, yieldedmarginal improvements. Pre-
nslationalMedicine.org 6 November 2013 Vol 5 Issue 210 210ra154 11
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diction performance was measured using correlation coefficient r. For
each analysis, r was computed five times per condition and averaged,
using a k-fold cross-validation technique. Hence, we report prediction
r as a distribution (mean ± SEM) rather than a single point.We opted to
use r as themetric for prediction accuracy because of its common usage
in other BMI studies. Offline predictions using EMG activity were per-
formed using a similar procedure. Eight EMG voltage channels were
each resampled at 10 Hz—the same rate as used for neural decoding.
All other decoding steps andmodels (Eq. 5) were equivalent for the two
methods.

In addition to computing r using all recorded neurons, we com-
puted random neuron-dropping curves to evaluate the functional ef-
fect of number of recorded neurons on offline prediction performance.
This analysis was conducted separately for unimanual and bimanual
conditions, although the amount of training data was enforced to be
equal for both analyses. For each neuron-dropping curve, the number
of neurons was increased at fixed intervals. At each neuronal quantity,
n randomly selected neurons were used to both train the model and
make predictions of bimanual kinematics on a separate block of test
data. This procedure was repeated five times at each step, each time a
random subset of neurons was selected and a different block of the
session was designated as training data to cross-validate our results.
In addition, neuron-dropping curves were computed both overall
and by cortical area (Figs. 5, A to D, and 6G).

When the UKF model was fit, both offline and online, one of the
parameters computed was the noise covariance matrix R. This Rmatrix
was estimated using the product of the regression residual matrix and
its transpose and was normalized by several constant terms (24). Fur-
thermore, the diagonal of R has a practical interpretation: values closer
to 1 indicate that the neuron has a contribution that could largely be
accounted for simply by noise. Conversely, lower values along the R-
diagonal contribute more to the fitting of the neural tuning model.
We use this R-diagonal term for each neuron as a proxy for its involve-
ment in representing movements of a single arm. By computing R for
right and left arms within a single experiment, we were able to evaluate
the multifunctionality of a single neuron, and how this property was
affected by bimanual modes of movements (fig. S2, B and C).

Online predictions using the UKF were computed using the same
model as was used for offline analysis. Neuronal timestamp data from
each of the three acquisition systems were sent over the local network
to a single master computer. UKF algorithms within the custom BMI
suite decoded the activity of all recorded (monkey C) or all arm area
(monkey M) neurons. Output from the single 4D UKF assigned (x,y)
position of both right and left hands of the avatar.

To generate an estimate of the chance performance level during brain
control experiments, each session was replayed offline with the pe-
ripheral target locations selected from a randomly shuffled array of
the session’s actual target location combinations. Each trial proceeded
according to the same contingencies as during online BMI control in-
cluding the 10-s timeout period and target hold times. If each virtual
hand passed into and held the center targets, then moved into and
held the peripheral targets at random locations, then the trial was cor-
rect. This procedure was repeated 10 times for each BC with arms
(monkey C) and BC without arms session (both monkeys).

A discrete classifier was used to make predictions of target location
from both passive observation and BC without arms sessions. We
used a k-NN model with k = 5 for these predictions. k-NN is a non-
parametric classification algorithm that searches nearest-neighbor data
www.ScienceTra
(from training data) within the feature space—in the case of neural
predictions, this would be a space defined by binned firing rates of
all the neurons. By searching for the k-NNs to the test data, the al-
gorithm can be made more robust. The classifications of each “neigh-
bor” are counted as votes toward the prediction of the unknown sample
class. Neural activity was binned into a single 250-ms window during a
specified epoch aligned on target onset. We then slid this window at
25-ms increments along the task interval from −0.5 to 0.75 s, and at
each step, the k-NN model was fit with 75% of the session’s trials and
target location predictions were made on the remaining 25% of trials.
Train and sample trials were randomly selected five times, and the
resulting prediction performance in terms of fraction correct predic-
tion was averaged. In addition to the sliding window k-NN analysis,
we used k-NN to generate a neuron-dropping curve based on activity
during BC without arms. Similar to the continuous UKF model, we gen-
erated predictions of target locations using a varying number of neurons,
ranging from 1 to all available. Predictions for the 50- to 500-ms window
were compiled, and the most common output was selected as the “vote.”
Each test trial therefore had one vote, rather than computed performance
as a function of time. Performance was computed in terms of fraction
correct as a function of population size.

Statistical analysis
Several statistical methods were used in this study to validate the re-
sults we obtained. We used a t test (a = 0.05) for parametric tests and
the Wilcoxon signed rank test (a = 0.05) or Wilcoxon rank sum test
(a = 0.05) for nonparametric tests when data were not drawn from a
normal distribution. Both one-way and two-way ANOVA tests (a =
0.05) were used in the statistical analysis of correlated neural activity of
Fig. 7. k-NN classifier performance (Fig. 6) was measured as fraction
correct prediction. In this analysis, chance-level performance was 1/4.
The 95% confidence interval was constructed using the one-proportion
z test (Eq. 6):
z ¼

ˇ

p − p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1 − p0Þ

p ffiffiffi
n

p ð6Þ

where n is the number of trials used for test data and p0 = 0.25. Offline
predictions of cursor X and Y position were compared with actual
cursor positions using Pearson’s product-moment correlation coef-
ficient r. To generate a distribution of r, we repeated the prediction
using a five-fold cross-validation technique, with each iteration using
a different block of data for training and test data.
SUPPLEMENTARY MATERIALS

www.sciencetranslationalmedicine.org/cgi/content/full/5/210/210ra154/DC1
Fig. S1. Behavioral results from bimanual and unimanual joystick experiments.
Fig. S2. Decoding performance during joystick control.
Fig. S3. Improvements to UKF model.
Fig. S4. Plasticity during passive observation training.
Fig. S5. Arm EMGs during passive and active trials.
Fig. S6. Temporal changes in prediction accuracy during passive observation.
Table S1. Unimanual and bimanual modulation differences by area.
Movie S1. Screen capture of bimanual center-out joystick control trials.
Movie S2. Video of monkey performing bimanual joystick control trials using two joysticks.
Movie S3. Video of monkey performing bimanual BC with arms.
Movie S4. Screen capture of bimanual BC without arms.
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